Direct Patterning of p-Type-Doped Few-layer WSe2 Nanoelectronic Devices by Oxidation Scanning Probe Lithography

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Advanced oxidation scanning probe lithography.

Force microscopy enables a variety of approaches to manipulate and/or modify surfaces. Few of those methods have evolved into advanced probe-based lithographies. Oxidation scanning probe lithography (o-SPL) is the only lithography that enables the direct and resist-less nanoscale patterning of a large variety of materials, from metals to semiconductors; from self-assembled monolayers to biomole...

متن کامل

Scanning Probe Techniques for Engineering Nanoelectronic Devices

microscopy-based techniques is enabling new ways to build and investigate nanoscale electronic devices. Here we review several advanced techniques to characterize and manipulate nanoelectronic devices using an atomic force microscope (AFM). Starting from a carbon nanotube (CNT) network device that is fabricated by conventional photolithography (micron-scale resolution) individual carbon nanotub...

متن کامل

Scanning Probe Microscope Techniques for the Engineering of Nanoelectronic Devices

Using CNT network sensors as our working example, we review AFM-based techniques which are used to study and engineer nanoelectronic devices. We have used dc-EFM and ac-EFM to identify the locations and resistances of individual CNTs that are electrically connected in parallel. Next, 5GM and tm-SGM were used to reveal the semiconducting response of each CNT. With the information available in th...

متن کامل

Direct writing of electronic devices on graphene oxide by catalytic scanning probe lithography

Reduction of graphene oxide at the nanoscale is an attractive approach to graphene-based electronics. Here we use a platinum-coated atomic force microscope tip to locally catalyse the reduction of insulating graphene oxide in the presence of hydrogen. Nanoribbons with widths ranging from 20 to 80 nm and conductivities of >10(4) S m(-1) are successfully generated, and a field effect transistor i...

متن کامل

In situ negative patterning of p-silicon via scanning probe lithography in HF/EtOH liquid bridges.

We succeeded in extending local oxidation to in situ negative patterning. HF/EtOH was used as both gap-bridging electrolyte and oxyanion source. EtOH and HF were found to be able to accelerate the growth of silicon oxide and simultaneously etch grown oxide, respectively. These findings are expected to open new possibilities in utilizing local oxidation nanolithography in order to directly fabri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: ACS Applied Materials & Interfaces

سال: 2018

ISSN: 1944-8244,1944-8252

DOI: 10.1021/acsami.8b15937